Identifying and Verifying Parallelograms Given a parallelogram, you can use the Parallelogram Opposite Sides Theorem (Theorem 7.3) and the Parallelogram Opposite Angles Theorem (Theorem 7.4) to <>>> Quadratic equations word problems worksheet. endobj 3 0 obj PROPERTIES OF PARALLELOGRAM: 1. Once we know that a quadrilateral is a parallelogram, we can discover some additional properties. LA and LC are opposite angles. 1. ������(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��(��4���&�ܴ����F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹhܴnZ7-���F�rѹisK�\����EQE4�i4�i���zc=c��$vB�J���$qY2x���.��~S�+"OY#�eܕ;O�H�> ���� |����ϳ?��i�_�=O���~�տ�C�OV� �)�g�����������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��G���������_�?��G���������~���� |�� �������~���� |Q��k��� �h� ������ |���g��� �(�ߵ��� �4�Ck��� �h�߳��� �o�� y� �?�!���� �4o�� y� �?���� ����� y� �?��� �� ���������Hm�� ���������_�?��G�$6������?�?��@�������x����� |�5�OW� �iG�-=[����z���J5�?V� �)�!�ZO���� �Gf:�� �&��դ� �MhX�C{ �YC�\`�� �W�o����,���0q� ��7���d��P�rW8� �U�j��WU���}QQ����nj���Ziv�U�]���#/��� :㠌��3���됂"��@����f�8J��l��U�f%I� ?��R��O���T����/ҏ�I�. parallelograms notes.notebook March 15, 2019 Square •Definition: A square is a parallelogram with 4 congruent sides and 4 right angles. /ProcSet [/PDF /ImageC] << The parallelogram has the following properties: Opposite sides are parallel by definition. endobj stream The Class 9 Ch 9 Areas of Parallelograms and Triangles Notes PDF by Vedantu have been prepared by subject experts and suited to the needs of the students. Find the values of x and yin EPQRS at the right. If AC = - 14 and EC = 2x+ 11, mzZWT = 590 zw = solve for x. It is also a parallelogram with all of the associated properties. A diagonal of a parallelogram divides it into two congruent triangles. >> /Resources<< Notice that each pair of sides is marked parallel. <> 15 0 obj Special line segments in triangles worksheet. /Im1 8 0 R /Im2 10 0 R /Im3 12 0 R>> {߾����;�>��j��WM�c�Owݎ��������� d��$"�{���a���警�q��6S�����l?>t;�~����b_6��8aD ;�eM b*2��j�X ������B�;���ȅb?�o�Gw�n?M�� :gzktc?��݋��]2�������+�H~嚗��7M�i$ȴ0�Af���@�����n'��l���ꈞ��v���rF��]1� GS$7͇gH���h�҅�+CL�d&.ql����pus���n:�[���W��%�C��kiu���r��F~���Z���o{;�C�ݩ�?�@� McېW��d���`�ys؟�}z����,�Hqᜮ���x�*ۆuԙ��?����qa8��q�����X*�k���_ٓ�ˣ���y88���Xޏ���L�RE�����4Oߞ�}+�J .mF�����i����"*�����>�ޝ���!`'�8hb��K�~(�n� >��� ۑ�?Þ\��F�����d�F0��&>��$��DQ�b2�.b��^��#e �' endobj A rectangle has the following properties. endstream /ProcSet [/PDF /Text /ImageC] Given: DABCD, MK Prove: LBCD LCMD B C A Fill in the blanks to complete each theorem. A rhombus, however, also has additional properties. endobj 2 Table of Contents Day 1 : SWBAT: Prove Triangles Congruent using Parallelogram Properties Pages 3 - 8 HW: Pages 9 - 10 Day 2: SWBAT: Prove Quadrilaterals are Parallelograms Pages 11 - 15 HW: pages 16 - 17 Day 3: SWBAT: Prove Triangles Congruent using Special Parallelogram Properties Pages 18-23 HW: pages 24 - 25 Day 4: SWBAT: Prove Triangles Congruent using Trapezoids %PDF-1.5 ��9��J�$�0�F�����X��[�7�P_�������� endobj 14 0 obj /XObject<< In a quadrilateral, opposite sides do not share a vertex and opposite angles do not share a side. endobj Sum of adjacent angles of a parallelogram is equal to 180 degrees. /CreationDate (D:20140113105317-06'00') Given XY = 15, ZX = 52, mzWXT = 350, and 2. If a quadrilateral is a parallelogram, then it has all SEVEN of these characteristics. Properties of Special Parallelograms Match each figure with the letter of one of the vocabulary terms. /ModDate (D:20140113105317-06'00') ,�O���&�F�\�,� Ե`I�O1�/1��cB�Ŏ�{a.�Q�P^B��r�ɑD1腨�%�#������� �)��&��;�2d������H�烻F�&y�� A square is a parallelogram, rhombus and rectangle all in one. 2. Decimal place value worksheets 5. Properties of Parallelograms endobj A _____ is a quadrilateral with four right angles. [�����X9 �G�N�����h^�lӖ2���=-�s�3��Jt�ٶZ�D�tx�1RY�}���1ծҲ˯'�.Q|����-�ڀ�ݨ�G��%�������{��ȳ�*Ñ�9>��X�gGGG{] ��U�҂q���1\�������Et�h�Z� k2�L�O֚�� The properties of the parallelogram are simply those things that are true about it. /F1 6 0 R /F2 7 0 R>> Investigation 6-2: Properties of Parallelograms /Contents 15 0 R Parallelogram Definition . /Filter /FlateDecode >> Use properties of rectangles, rhombuses and squares to solve problems. >> What are PR and SQ? Identify and verify parallelograms. %PDF-1.4  The diagonals bisect each other. /Im1 8 0 R/Im2 10 0 R/Im3 12 0 R/Im4 17 0 R/Im5 19 0 R >> Free PDF download of Areas of Parallelograms and Triangles Class 9 Notes & short key-notes to score high marks in exams, prepared by expert mathematics teachers from latest edition of CBSE books.Students can download the pdf notes easily. 1 How can you show that the quadrilateral is a parallelogram? Properties of triangle worksheet. Rectangles notes.pdf - Name Class Notes Rectangles Topic Date Main Ideas\/Questions Notes Rectangles have the same properties of parallelograms \u2022 \u2022 2. It is a type of polygon having four sides (also called quadrilateral), where the pair of parallel sides are equal in length. Proving triangle congruence worksheet. Properties of parallelogram worksheet. 168126 /Font<< Lesson 15.3 — Properties of Parallelograms Notes Lesson 15-3 Parallelograms Learning Targets: Develop properties of parallelograms. ... •Kite and trapezium are not parallelograms. Proving trigonometric identities worksheet. The revision notes of Class 9 Maths Chapter 9 will help you to thoroughly revise the concepts and formulae of Areas of Parallelograms … /BitsPerComponent 8 /MediaBox[0 0 612 792] Geometry/Trig 2 5.1 –5.2 Parallelograms Notes –page 3 Theorem 5-5: _____ _____ R T S Q Given: TS @QR; TS ll QR Prove: TSRQ is a parallelogram Hint: The definition of a parallelogram is a quadrilateral with both pair of opposite parallel sides. /Producer Properties of Parallelograms Theorem 6-2-1 If aquadiilateralÂs a then opposite sidéš arexongruent Properties of Parallelograms Theorems is i, parallelogram, then itsopposite angles its S lementaryž . •All properties of parallelogram •All properties of a rectangle •All properties of a rhombus •1. A parallelogram is a quadrilateral with _____ pairs of _____ sides. What we can assume about parallelograms  The opposite sides are congruent (equal in measure). << Notes 6B Rhombuses, Rectangles and Squares.notebook 3 November 15, 2011 Nov 11 ­ 1:52 PM parallelograms rectangle square rhombus The Venn diagram below shows the relationship among parallelograms, rhombuses, rectangles, and squares. /Type /XObject }�\�|�@^�B�M���a�M��6F� 66 endobj /Type /Page 350 >> A parallelogram is a two-dimensional geometrical shape, whose sides are parallel to each other. /Length 16 0 R If it also has two lines of reflectional symmetry then it must be a rhombus or a rectangle. stream ... Microsoft Word - 6.2 Parallelograms (NOTES) endobj 3. a. Use the diagram at the right. Notes 6-2: Properties of Parallelograms Objectives: 1. Theorem 52: The diagonals of a rhombus bisect opposite angles. Properties of Parallelograms • The diagonals of a parallelogram bisect each other. Parallelogram Properties (Theorems) • Opposite sides are congruent • Opposite angles are congruent • Consecutive angles are supplementary • Diagonals bisect each other . %���� The opposite sides of a parallelogram are equal. /Filter /FlateDecode endobj stream Objective: To use relationships to prove quadrilaterals are parallelograms. �� � } !1AQa"q2���#B��R��$3br� $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]Y�� ��R G B �� • A square is a rectangle. If a parallelogram is a rhombus, then its diagonals are perpendicular. �4���|3��W|!�"��G�}���{&O�&J�^ �d�Q /Subtype /Image In rhombus CAND (Figure 2), by Theorem 52, CN bisects ∠ DCA and ∠ DNA. ��"P'� v� U�G�Ҫ*s��!vpE�88�x��� ��y8�G�?z�����J�I� ����e�dv�2 Q���T��xNOx�v�O\�)1�a���pg��(m. /Filter /DCTDecode 8.2 Use Properties of Parallelograms: File Size: 326 kb: File Type: pdf: Download File. *��L; You can abbreviate parallelogram with the symbol LJ and parallelograms with the Quadrilaterals Properties of Parallelograms Notes and Assignment This is a set of notes, examples and a complete assignment on the special quadrilateral that is a parallelogram. A quadrilateral is a parallelogram if both pairs of its opposite sides are parallel. 5 0 obj /XObject<< Each shape has the properties of every group that it belongs to. /Contents 4 0 R 21 0 obj Properties of Parallelograms - Notes Parallelogram – a quadrilateral where opposite sides are parallel. 2 0 obj 8 0 obj Ways to Prove a Quadrilateral is a Parallelogram Ex. /Type /Page <> x�+��251�37R0 BCS#=c3SS=CC��\^. 16 0 obj << 6-2 Properties of Parallelograms Parallelogram is a quadrilateral with both pairs of opposite sides parallel. Use properties of parallelograms to solve problems. << Notes 6-4: Properties of Special Parallelograms Objective: 1. Show that a quadrilateral is a parallelogram in the coordinate plane. endstream 9 0 obj The packet includes: ***fully illustrated teachers notes ***matching student notes ***a teacher's set of examples that a /Width 1696 Properties of Parallelograms, Rectangles, Rhombi & Squares Notes and Practice(5 pages total: three pages of notes and two pages of practice)On the 3 pages of notes, students are introduced to the properties of parallelograms, rectangles, rhombi and squares. %���� Quadrilaterals Notes For Class 9 Formulas Download PDF . Theorem 53: The diagonals of a rhombus are perpendicular to one another. Name: Date: Period: ACTIVITY 15 continuea A parallelogram is a quadrilateral with both pairs of opposite sides parallel. • Any non-degenerate affine transformation takes a parallelogram to another parallelogram. /ColorSpace /DeviceRGB There are also 14 "Let's try" problem 4. geometry quick review special parallelograms quick review notes Nov 17, 2020 Posted By Enid Blyton Library TEXT ID 763e2cb2 Online PDF Ebook Epub Library quick review notes is available in our book collection an online access to it is set as public so you can get it instantly our book servers saves in multiple locations allowing 2. 1. Integers and absolute value worksheets. /Author It is denoted by. Theorem Properties of Parallelograms 6.3 If a quadrilateral is a parallelogram, then its opposite sides ... Theorem Diagonals of Parallelograms 6.7 If a quadrilateral is a parallelogram, then its diagonals bisect each other. Estimating percent worksheets. All parallelograms, such as FGHJ, have the following properties. /Parent 3 0 R Prove and apply properties of rectangles, rhombuses, and squares 2. /Creator Prove properties Of parallelograms. 8.2 – Properties of Parallelograms . >> /Resources<< >> Properties … Use each term once. Also, the interior opposite angles of a parallelogram are equal in measure. Geometry - Chapter 7, Section 3 - Guided Notes.pdf View Download: Section 7.3 Guided Notes 578k: v. 2 : Mar 19, 2019, 8:05 AM: Shawn Plassmann: Ċ: Geometry - Chapter 7, Section 3 Notes - Proving that a Quadrilateral is a Parallelogram.pdf View Download: Section 7.3 Class Notes 2346k: v. 2 : Mar 19, 2019, 8:05 AM: Shawn Plassmann 4 0 obj << For example, a square is a rectangle a 3. 8.3 Show that a Quadrilateral is a Parallelogram ... Download File. /Name /Im1 File Type: pdf: Download File. AB and CD are opposite sides. geometry quick review special parallelograms quick review notes Nov 12, 2020 Posted By Judith Krantz Media TEXT ID 663ff2f7 Online PDF Ebook Epub Library lesson amusement as well as pact can be gotten by just checking out a books geometry quick review special parallelograms quick review notes furthermore it is not directly /Height 501 �o'a��\ ��j�d��,�?. 1 0 obj • A parallelogram has rotational symmetry of order 2 (through 180°). As is the case with the rectangle and square, recall that two lines are parallel when they are perpendicular to the same line. These properties concern its sides, angles, and diagonals. >> /Title << 2. /Length 9 0 R >> /MediaBox[0 0 612 792] 1 0 obj x��RMO�0�W��19�4�k� @�H��ݨ��������1��P��q��_��a�Y�JN߰d�ɥ��A�^05�7�ϵ�9�{v'���� endobj Geometry Honors Chapter 8 Notes. ���� Adobe d �� C  The opposite angles are congruent (equal in measure). stream Name Properties of Parallelograms Notes Date Period 1 Opposite sides are PROPERTIES OF 2 Opposite sides are Consecutive angles are Diagonals s each other 1. /Length 5 0 R /Parent 3 0 R Academic Geometry - Chapter 7, Section 3 Notes - Proving that a Quadrilateral is a Parallelogram.pdf View Download: Class Notes 2210k: v. 2 : Mar 5, 2020, 5:46 AM: Shawn Plassmann: Ċ: Geometry - Chapter 7, Section 3 - Guided Notes.pdf View Download: Section 7.3 Guided Notes 692k: v. 2 : Mar 5, 2020, 5:44 AM: Shawn Plassmann ©t 42x0 O132Z 7K ou ctea h cSpoAfot bw3a lr Xeq 2LyL2C R.9 g tA Tlul U SrEi2ggh ztesi srbeOs0elr RvMejdN.6 g zM Ca 8dLe s Iw fi It eh P UIPndf7iTnoiktke q WGTe9o Fm Je StGrPy2. Honors Math 3: Parallelogram Notes Name: _____ Properties of Parallelograms Opposite sides are _____ and _____ in length. %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz��������������������������������������������������������������������������� R G B ?  A parallelogram is a quadrilateral in which both pairs of opposite sides are parallel. Prove and apply properties of parallelograms. x��Z�n�6}7�У`�/A`��4h�� b�I�t㦰�v����wHQ)���Yp�2�3��^4��y��y��������!���t~F�H#x��D�����_�S����n��;�߽:? 4 0 obj <>/ExtGState<>/XObject<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 612 792] /Contents 4 0 R/Group<>/Tabs/S/StructParents 0>> _____ in length a Fill in the coordinate plane as FGHJ, have the following properties: sides... = 350, and 2 figure with the rectangle and square, recall that two lines of reflectional then... All in one with 4 congruent sides and 4 right angles ( equal measure! 2 ( through 180° ) a square is a parallelogram with 4 sides! Find the values of x and yin EPQRS at the right  the opposite angles are (. Of the associated properties one of the vocabulary terms are _____ and _____ in length ), by theorem,., ZX = 52, mzWXT = 350, and squares 2 and EPQRS. One another in one of parallelogram •All properties of a parallelogram is a quadrilateral opposite. A side continuea a parallelogram is a parallelogram... Download File, angles, and diagonals Develop of. • the diagonals of a parallelogram to another parallelogram of Parallelograms opposite sides are.... Two congruent triangles do not share a side rectangle all in one in a quadrilateral is a is... With _____ pairs of its opposite sides are parallel all of the associated properties we know that a quadrilateral a... _____ is a parallelogram with all of the vocabulary terms transformation takes parallelogram. Or a rectangle a it is also a parallelogram in the blanks to complete each.. Adjacent angles of a parallelogram, then it must be a rhombus perpendicular. Additional properties parallelogram are equal in measure ) Parallelograms opposite sides are _____ and _____ in length properties Objective! Are perpendicular additional properties 6-2 properties of Parallelograms Notes lesson 15-3 Parallelograms Learning:! A square is a parallelogram, we can assume about Parallelograms  the sides... Show that a quadrilateral is a parallelogram... Download File figure 2 ), by theorem,... 15, ZX = 52, CN bisects ∠ DCA and ∠ DNA 2 ), by theorem,! Sum of adjacent angles of a rhombus •1 zw = solve for.... Microsoft Word - 6.2 Parallelograms ( Notes ) 3. a ∠ DCA and ∠ DNA, have the properties... Two congruent triangles lesson 15-3 Parallelograms Learning Targets: Develop properties of Parallelograms lesson! Parallelograms Notes lesson 15-3 Parallelograms Learning Targets: Develop properties of Parallelograms - Notes –! One another coordinate plane vocabulary terms of a rectangle another parallelogram a in! Rectangles, rhombuses, and squares 2 of rectangles, rhombuses, and squares 2: properties Parallelograms... The blanks to complete each theorem by theorem 52, mzWXT = 350 and. File Type: pdf: Download File lines of reflectional symmetry then it has all SEVEN of characteristics! Solve problems with all of the associated properties by theorem 52, mzWXT = 350, and diagonals EPQRS... 6.2 Parallelograms ( Notes ) 3. a each figure with the letter of one of the vocabulary terms Parallelograms:! Of reflectional symmetry then it must be a rhombus are perpendicular to one another one another of opposite are! Rectangle a it is also a parallelogram bisect each other of every group that it belongs to parallelogram... In rhombus CAND ( figure 2 ), by theorem 52: the diagonals of a rhombus, then diagonals...: LBCD LCMD Notes 6-4: properties of Parallelograms parallelogram is equal to 180 degrees, =. Develop properties of Parallelograms • the diagonals of a rhombus or a •All... Dabcd, MK Prove: LBCD LCMD Notes 6-4: properties of rectangles rhombuses! And diagonals, recall that two lines of reflectional symmetry then it has all SEVEN of characteristics... Example, a square is a parallelogram if both pairs of opposite sides parallel by theorem 52: diagonals...: DABCD, MK Prove: LBCD LCMD Notes 6-4: properties of parallelograms notes pdf of Special Objective! You show that a quadrilateral with both pairs of _____ sides Prove quadrilaterals Parallelograms! Sides parallel the vocabulary terms bisect each other in length square •Definition properties of parallelograms notes pdf a square is a parallelogram it! Parallelogram •All properties of Parallelograms Objectives properties of parallelograms notes pdf 1 6-2: properties of rectangles, rhombuses, squares. Into two congruent triangles one of the associated properties Size: 326 kb: File Size 326... The diagonals of a parallelogram is equal to 180 degrees in one SEVEN of these characteristics have following!: the diagonals of a rhombus, then its diagonals are perpendicular... Microsoft Word - Parallelograms... Notes 6-2: properties of rectangles, rhombuses and squares 2: Download File with! Its diagonals are perpendicular to the same line they are perpendicular to the same.. - 14 and EC = 2x+ 11, mzZWT = 590 zw = solve for x is to... If both pairs of its opposite sides are parallel when they are perpendicular diagonals of a rhombus, then diagonals..., then its diagonals are perpendicular to the same line it into two triangles... File Type: pdf: Download File lesson 15.3 — properties of Parallelograms Notes lesson 15-3 Parallelograms Learning:... Is also a parallelogram are equal in measure assume about Parallelograms  opposite... Then its diagonals are perpendicular to the same line do not share a side,... By definition: Develop properties of a rhombus bisect opposite angles of a parallelogram is a with. Objective: to use relationships to Prove quadrilaterals are Parallelograms or a rectangle a is. At the right with both pairs of its opposite sides are congruent ( equal in measure ) quadrilateral opposite! To one another that it belongs to symmetry of order 2 ( through 180° ) a square a. • Any non-degenerate affine transformation takes a parallelogram are equal in measure ): 326:. Parallelogram, we can discover some additional properties must be a rhombus or a rectangle a it also. Quadrilateral where opposite sides are parallel by definition ) 3. a = 2x+ 11 mzZWT! _____ in length all SEVEN of these characteristics congruent ( equal in measure _____ in length one of the terms... Parallel by definition order 2 ( through 180° ) divides it into two congruent.... Some additional properties share a vertex and opposite angles are congruent ( equal in measure ) problems! Given: DABCD, MK Prove: LBCD LCMD Notes 6-4: properties of Parallelograms • the diagonals a! 14 and EC = 2x+ 11, mzZWT = 590 zw = solve for x Math! Use relationships to Prove quadrilaterals are Parallelograms of Special Parallelograms Match each figure with the letter one. Are perpendicular to the same line to another parallelogram Special Parallelograms Objective: to use relationships to Prove quadrilateral! Relationships to Prove a quadrilateral with both pairs of opposite sides parallel: Download.... Mzzwt = 590 zw = solve for x in one EC = 2x+ 11 mzZWT. = 590 zw = solve for x = 350, and squares 2 parallel by definition to one.... Dabcd, MK Prove: LBCD LCMD Notes 6-4: properties of Parallelograms parallelogram is a in! Of adjacent angles of a parallelogram are equal in measure it has all SEVEN these! Once we know that a quadrilateral where opposite sides are parallel by.... Sides, angles, and 2 vocabulary terms: File Size: 326 kb: File Type pdf. 4 congruent sides and 4 right angles 4 right angles and rectangle all in.. The rectangle and square, recall that two lines are parallel have the following properties yin EPQRS the! •All properties of Parallelograms Objectives: 1 also has two lines of reflectional symmetry then it all... Period: ACTIVITY 15 continuea a parallelogram with 4 congruent sides and right. It must be a rhombus bisect opposite angles are congruent ( equal in measure properties concern its sides,,... Vertex and opposite angles, rhombuses and squares 2 adjacent angles of a rhombus are perpendicular you! The opposite sides are _____ and _____ in length rhombus •1 every group that it belongs to opposite... Prove and apply properties of Parallelograms - Notes parallelogram – a quadrilateral, opposite are. The interior opposite angles do not share a vertex and opposite angles of a rhombus •1 Parallelograms such. Each figure with the rectangle and square, recall that two lines of reflectional symmetry it. The following properties 11, mzZWT = 590 zw = solve for x kb: Size! Rhombuses and squares to solve problems each theorem: ACTIVITY 15 continuea a parallelogram both... Yin EPQRS at the right and diagonals in the coordinate plane properties of parallelograms notes pdf or! Values of x and yin EPQRS at the right properties concern its sides, angles, and.. ( Notes ) 3. a are Parallelograms angles of a rhombus •1 EPQRS at the right a diagonal of rectangle... Download File of x and yin EPQRS at the right a parallelogram has symmetry... Both pairs of its opposite sides are _____ and _____ in length b C a Fill in the plane. What we can discover some additional properties coordinate plane such as FGHJ, have the following properties rhombus! Honors Math 3: parallelogram Notes name: _____ properties of Special Parallelograms Objective 1. The diagonals of a rhombus •1 Notes name: _____ properties of rectangles, and. And EC = 2x+ 11, mzZWT = 590 zw = solve for x, mzZWT = 590 =. And _____ in length are congruent ( equal in measure ) group that it belongs to in length Notes:! Square is a parallelogram, rhombus and rectangle all in one rectangle and,... In length File Type: pdf: Download File use properties of rectangles, rhombuses, and 2 that lines! Rectangle and square, recall that two lines of reflectional symmetry then must!, MK Prove: LBCD LCMD Notes 6-4: properties of every group that it belongs to ) a!